下面就是我们帮你搜集整理的有关《抛物线的知识点有哪些,抛物线的基本知识点》的问答
本文目录一览
抛物线的知识点有哪些?
1、准线、焦点:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。
2、轴:抛物线是轴对称图形,它的对称轴简称轴。
3、弦:抛物线的弦是连接抛物线上任意两点的线段。
4、焦弦:抛物线的焦弦是经过抛物线焦点的弦。
5、正焦弦:抛物线的正焦弦是垂直于轴的焦弦。
6、直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。
7、主要直径:抛物线的主要直径是抛物线的轴。
8、离心率:e=1(恒为定值,为抛物线上一点与准线的距离以及该点与焦点的距离比)
9、焦点:(p/2,0)
10、准线方程l:x=-p/2
11、顶点:(0,0)
12、通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦。
13、定义域:对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。
14、值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。
扩展资料:
有关切线、法线的几何性质
(1)设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。
(2)过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。〈为性质(1)第二部分的逆定理〉从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。
(3)设抛物线上一点P的切线与法线分别交轴于A、B,则F为AB中点。
(4)设抛物线上除顶点外的点P的切线交轴于A,交顶点O的切线于B,则FB垂直平分PA,且FB与准线的交点M恰好是P在准线上的射影(即PM垂直于准线)。
(5)抛物线的三条切线所围成的三角形,其外接圆经过焦点。即:若AB、AC、BC都是抛物线的切线,则ABCF四点共圆。
(6)过抛物线外一点P作抛物线的两条切线,连接切点的弦与轴相交于A。又设P在轴上的射影为B,则O是AB中点。
(7)若抛物线与一个三角形的三条边(所在直线)都相切,则准线通过该三角形的垂心。
抛物线的基本知识点
抛物线是一种二次函数,其标准形式为 y = ax² + bx + c,其中 a、b、c 都是实数,a ≠ 0。以下是抛物线的一些基本知识点:
1. 抛物线的开口方向。当 a > 0 时,抛物线开口向上,当 a < 0 时,抛物线开口向下。
2. 抛物线的对称轴。抛物线的对称轴是一条垂直于 x 轴的直线,其方程为 x = -b/2a。
3. 抛物线的顶点。抛物线的顶点是抛物线的最高点或者最低点,其坐标为 (-b/2a, c - b²/4a)。
4. 抛物线的零点。抛物线的零点是指抛物线与 x 轴相交的点,其可以通过求解二次方程 ax² + bx + c = 0 来求得。
5. 抛物线的焦点和准线。如果抛物线开口向上,则焦点在抛物线上方,准线在抛物线下方;如果抛物线开口向下,则焦点在抛物线下方,准线在抛物线上方。
6. 抛物线的应用。抛物线在物理、工程等领域中有广泛的应用,如抛物线运动、抛物线反射面、抛物线天线等等。
掌握了以上基本知识点,可以更好地理解和应用抛物线,为学习更深入的相关知识奠定基础。
总结:以上问题和解答均搜集整理自互联网,内容仅供参考,希望对你有所帮助。