亲爱的小伙伴们,如果你对有机化学中 亲核取代亲核加成亲电取代亲电和亲核芳香取代反应详细资料大全不是很熟悉,那么你来对了地方。今天我将和大家分享一些关于有机化学中 亲核取代亲核加成亲电取代亲电和亲核芳香取代反应详细资料大全的知识,希望能够帮助大家更好地理解这个话题。

本文目录一览

有机化学中 亲核取代,亲核加成,亲电取代,亲电加成 有什么联系区别?

亲核取代反应简称SN。饱和碳上的亲核取代反应很多。醇可与氢卤酸、卤化磷或氯化亚砜作用,生成卤代烃。卤代烷被氢化铝锂还原为烷烃,也是负氢离子对反应物中卤素的取代。当试剂的亲核原子为碳时,取代结果形成碳-碳键,从而得到碳链增长产物,如卤代烷与氰化钠、炔化钠或烯醇盐的反应。由于反应物结构和反应条件的差异,SN有两种机理,即单分子亲核取代反应SN1和双分子亲核取代反应SN2。SN1的过程分为两步:第一步,反应物发生键裂(电离),生成活性中间体正碳离子和离去基团;第二步,正碳离子迅速与试剂结合成为产物。总的反应速率只与反应物浓度成正比,而与试剂浓度无关。SN2为旧键断裂和新键形成同时发生的协同过程。反应速率与反应物浓度和试剂浓度都成正比。能生成相对稳定的正碳离子和离去基团的反应物容易发生SN1,中心碳原子空间阻碍小的反应物容易发生SN2。如果亲核试剂呈碱性,则亲核取代反应常伴有消除反应,两者的比例取决于反应物结构、试剂性质和反应条件。低温和碱性弱对SN取代有利。

亲核加成:如果进攻试剂本身已不具有获取电子倾向,反而有提供电子能力,如醇、-SH(巯)、胺基与炔反应时,是有提供电子能力的RO-(不是离子,未达到电离程度)先进攻炔键,称亲核加成。此反应是由亲核试剂与底物发生的加成反应。反应发生在碳氧双键、碳氮叁键、碳碳叁键等等不饱和的化学键上。最有代表性的反应是醛或酮的羰基与格氏试剂加成的反应。水、醇、胺类以及含有氰离子的物质都可以与羰基加成。碳氮叁键(氰基)的亲核加成主要表现为水解生成羧基。此外,端炔的碳碳叁键也可以与HCN等亲核试剂发生亲核加成,如乙炔和氢氰酸反应生成丙烯腈(CH=CH-CN)。其他重要的亲和加成反应有:麦克尔加成、醇醛加成/缩合、Mukaiyama反应等等。

亲电取代:由于苯环上离域的π电子分布在分子平面的上下两侧,电子云暴露,受原子核约束力较σ电子小,比较容易受亲电试剂的进攻,发生亲电取代反应。常见的能与苯发生反应的亲电试剂有:O2N+,R+,R-C+=o,SO3,X2等。大量实验结果表明,苯与亲电试剂发生亲电取代反用的机理如下:、1、亲电试剂与苯环的π电子互相作用生成π络合物1、σ络合物消去一个氢离子,又恢复苯环稳定的结构,得到亲电取代产物。

亲电加成:不饱和烃受亲电试剂进攻后,π键断裂,试剂的两部分分别加到重键两端的碳原子上。反应采取哪种机理进行与亲电试剂和不饱和化合物的性质、溶剂的极性和过渡态的稳定性等都有很大关系,一般来说,卤素加成反应中,溴与烯烃的加成反应主要按照环鎓离子中间体机理进行,而氯与烯烃的加成反应主要按照前两种机理进行。这主要是因为两种卤素原子电负性和原子半径不同,溴的孤电子对容易和碳正离子p轨道重叠,而氯则不然。不同的机理也会产生立体选择性不同的产物。碳正离子机理得到顺式加成和反式加成产物的混合物,离子对机理得到的是顺式加成产物,而环鎓离子机理得到反式加成产物。对于不对称的亲电加成反应来讲,反应一般符合马氏规则,产物具有区域选择性。但双键碳上连有吸电子基或以有机硼化合物作亲电试剂时,产物是反马氏规则的,例如烯烃与乙硼烷生成烷基硼的反应。

以上。

返回目录

亲核芳香取代反应详细资料大全

芳香族亲核取代反应(NucleophilicAromaticSubstitutionreaction,SNAr)是亲核取代反应的一类,发生在芳香环上。当中一个亲核体取代了一个好的离去基团,例如在芳香环上的卤代烃。现有六种芳香环的亲核取代反应机理。

基本介绍

中文名:芳香族亲核取代反应外文名:NucleophilicAromaticSubstitutionreaction简介,反应机理分类,双分子SNAr2机理,单分子SNAr1机理,苯炔机理,SRN1机理,

简介

芳香族亲核取代反应(NucleophilicAromaticSubstitutionreaction,SNAr)是亲核取代反应的一类,发生在芳香环上。当中一个亲核体取代了一个好的离去基团,例如在芳香环上的卤代烃。现有四种芳香环的亲核取代反应机理。

反应机理分类

正常的SN1和SN2难以发生,在芳环上可以进行的亲核取代反应有以下几种:

双分子SNAr2机理

芳香亲核取代最重要的机理;分为两步,与脂肪族亲核取代四面体机理,以及芳香族亲电取代芳基正离子机理类似,第一步进攻试剂与底物成键形成中间体,然后离去基团离去;通常第一步为决速步骤;机理的证明:1)二级动力学证明:2)1902年,分离得到了稳定的Meisenheimer盐;3)取代基效应邻硝基氯苯和其对位吸电子基团取代衍生物在和甲醇钠的反应中的相对速度:4)当X分别为Cl,Br,I,SOPh,时,反应速率差别很小,表明C-X的断裂不是决速步骤;与SN1,SN2机理不同;速率并不完全一致,X的性质会影响Y的进攻速率,X电负性增加,被进攻位点上电子云密度减小,亲核进攻速率加快;例如如下反应中,氟是芳环亲核取代反应最好的离去基团(F>CI>Br>I),SN1,SN2机理中,氟是最差的离去基团。

单分子SNAr1机理

在芳环上按照SNAr1机理进行的反应很少,重氮盐的水解被认为是按照SNAr1机理进行的,主要存在于芳基重氮化物的亲核取代反应中。证据:反应速率与重氮化合物浓度呈一级关系,与Y浓度无关;当邻位被氘代的底物进行反应时,二级同位素效应很大,表明C-N键断裂是决速步骤;当作为反应物,回收的起始物中含有,表明第一步是起始反应。

苯炔机理

消除加成机理:第一步,酸性最强的氢脱去,与Z的场效应有关,吸电子基团有利于邻位氢脱去,给电子基团有利于对位氢脱去;第二步,能形成最稳定碳负离子中间体的位点是亲核进攻的首选位点。证明:如果芳基卤化物具有两个邻位取代基,反应无法进行;Cilne取代,苯基上有取代基时,亲核取代反应可能发生在不同位点上,由取代基定位效应导致;不是所有的Cilne取代都是此反应机理;卤化物反应活性顺序为Br>I>Cl>F,表明非SNAr机理;温度8K时的氩基质中可分离出苯炔,可观测到其红外光谱,苯炔可以被捕获;本却具有芳香性,多出的一对电子仅覆盖两个碳原子的p轨道。

SRN1机理

自由基链式反应机理,需要电子给体引发;加入金属钾,更加有效提供溶剂化电子,Cline取代产物消失;加入自由基淬灭剂,9:10接近1.46:1。

返回目录

如果您对本文的内容感到满意,请在文章结尾处点击“顶一下”以表示您的认可。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。如果您想更深入地了解相关内容,可以查看文章下方的相关链接。