亲爱的朋友们,很多人可能对初一奥数一元一次方程测试题及答案和初一上册数学一元一次方程测试题及答案不是很了解,所以今天我来和大家分享一些关于初一奥数一元一次方程测试题及答案和初一上册数学一元一次方程测试题及答案的知识,希望能够帮助大家更好地了解这个话题。

本文目录一览

初一奥数一元一次方程测试题及答案

【 #初中奥数# 导语】一元一次方程指只含有一个未知数、未知数的次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。下面是 为大家带来的初一奥数一元一次方程测试题及答案,欢迎大家阅读。
一、精心选一选(每小题4分,共32分)
1.已知x=y,则下列各式中:x﹣3=y﹣3;3x=3y;﹣2x=﹣2y; 正确的有( )
A.1个 B.2个 C.3个 D.4个
2.下列方程中,解为x=3的方程是( )
A.x﹣2=﹣3 B.x﹣4=﹣2 C.x﹣8=﹣4 D.x﹣2=﹣1
3.将方程0.7+ 变形正确的是( )
A.7+ B.0.7+ C.0.7+ D.0.7+1.5x﹣1=3﹣x
4.下列变形中:①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- = 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( ).
A.4个 B.3个 C.2个 D.1个
5.解方程(3x+2)+2[(x﹣1)﹣(2x+1)]=6,得x=( )
A.2 B.4 C.6 D.8
6.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
A.2(x﹣1)+3x=13 B.2(x+1)+3x=13
C.2x+3(x+1)=13 D.2x+3(x﹣1)=13
7.如图所示,是某月份的日历表,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )
A.24 B.43 C.57 D.69
8.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为( )
A.2x+4×20=4×340 B.2x﹣4×72=4×340
C.2x+4×72=4×340 D.2x﹣4×20=4×340
二、细心填一填(每小题4分,共20分)
9.在公式s= (a+b)h中,已知s=16,a=3,h=4,则b= .
10.若(m+1)x|m|+3=0是关于x的一元一次方程,则m= .
11.当x= 时,代数式 (1-2x)与代数式 (3x+1)的值相等.
12.三个连续偶数的和为48,则这三个偶数为 .
13.某市自来水费实行阶梯水价,收费标准如下表所示,某用户5月份交水费44元,则所用水为 吨.
月用水量 不超过10吨的部分 超过10吨不超过16吨的部分 超过16吨的部分
收费标准(元/吨) 2.00 2.50 3.00
三、专心解一解(5个小题,共48分)
14.(9分)解方程: ﹣x=1﹣ .
15.(9分)阅读下列例题,并按要求完成问题:
例:解方程|2x|=1
解:①当2x≥0时,2x=1,它的解是x=
②当2x≤0时,﹣2x=1,它的解是x=﹣
所以原方程的解是x= 或x=﹣ .
请你模仿上面例题的解法,解方程:|2x﹣1|=3.
16.(9分)解方程: = ﹣1.
17.(10分)某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.
(1)该单位参加旅游的职工有多少人?
(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)
18.(11分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).
A方法:剪6个侧面; B方法:剪4个侧面和5个底面.
现有19张硬纸板,裁剪时x张用A方法,其余用B方法.
(1)用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
参考答案
一、1.C 2.A 3.C 4.B 5.D 6.A 7.B 8.A
二、9.5 10.1 11. 12.14、16、18 13.19
三、14. 解:去分母,得10x+5﹣15x=15﹣18+12x,
移项,得10x﹣15x﹣12x=15﹣18-5
合并同类项,得-17x=-8,
系数化为1,得x= .
15. 解:|2x﹣1|=3,
①当2x﹣1≥0时,2x﹣1=3,
∴x=2,
②当2x﹣1≤0时,﹣(2x﹣1)=3,
∴x=﹣1,
∴原方程的解是x=2或x=﹣1.
16. 解:整理,得 = —1
去分母,得90(x+1)=50(x+1)—6
去括号,得90x+90=50x+50-6
移项,得90x—50x=50-6-90
合并同类项,得40x=-46,
系数化为1,得x=﹣ .
17. 解:(1)设该单位参加旅游的职工有x人,由题意,得
解得x=360;
答:该单位参加旅游的职工有360人.
(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.
18. 解:(1)∵裁剪时x张用A方法,
∴裁剪时(19﹣x)张用B方法.
∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,
底面的个数为:5(19﹣x)=个;
(2)由题意,得
(2x+76)×2=(95﹣5x)×3
解得:x=7,
∴盒子的个数为: =30.
答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.

返回目录

初一上册数学一元一次方程测试题及答案

以下是 为大家整理的关于初一上册数学一元一次方程测试题及答案的文章,希望对大家有所帮助!
一、选择题(每小题3分,共30分)
1.下列方程是一元一次方程的是 ( )
A.x+2y=5 B. =2 C.x2=8x-3 D.y=1
2.下列方程中,解是x=2的是 ( )
A.2x-2=0 B. x=4 C.4x=2 D. -1=
3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是 ( )
A.等式性质1 B.等式性质2 C.移项 D.以上说法都不对
4.方程3- =1变形如下,正确的是 ( )
A.6-x+1=2 B.3-x+1=2 C.6-x+1=1 D.6-x-1=2
5.如果x=-8是方程3x+8= -a的解,则a的值为 ( )
A.-14 B.14 C.30 D.-30
6.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了 ( )
A.2天 B.3天 C.4天 D.5天
7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )
A.106元 B.102元 C.111.6元 D.101.6元
8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为 ( )
A.105元 B.100元 C.108元 D.118元
9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是 ( )
A.1个 B.2个 C.3个 D.4个
10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程 ( )
A. = B. -2= +2 C. - =2 D. = -2
二、填空题(每小题4分,共24分)
11.若2的2倍与3的差等于2的一半,则可列方程为 .
12.写出一个以x=- 为解的一元一次方程
13.已知5x+3=8x-3和 = 这两个方程的解是互为相反数,则a= .
14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距 千米.
15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是 元.
16. 规定个人发表文章、 图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是 元.
三、解答题(共66分)
17.(6分)解下列方程:
(1)4x-2(x-3)=x; (2)x- -1.
18.(6分)当x取何值时,代数式 和x-2是互为相反数?
19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.
20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?
21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?
22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?
23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.
24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.
(1)用x的代数式来表示总运费(单位:百元);
(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?
终点
起点
南昌
武汉
温州厂 4 8
杭州厂 3 5
(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.
参考答案:
1.D 2.D 3.A 4.A 5.B 6.B 7.D 8.C 9.B 10.B 11.2x-3= x 12.略 13.24 14.9x 15.300
16.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得 +x-2=0 解得x=
19.解:由题意,得{
解得:m=2,n= . 把m=2,n= 代入m2-5mn得 原式=22-5×2× =-2.
20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80
答:每一个长条的面积为80平方厘米.
21.解:设两队合作2个月完成,由题意,得x=1
解得x=5答:两队合作,5个月可以完工.
22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.
23.解:设火车的长为x米,由题意,得 = 解得x=100.
答:这列火车长100米.
24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.
(2)2x+76=84. x=4.
答:运往南昌的机器应为4台.
(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在. 答:略.

返回目录

如果您对本文的解答感到满意,请在文章结尾处点击“顶一下”以表示您的肯定。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。